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1 INTRODUCTION 
 
1.1 Background 
 
Detecting cutter wear poses a challenge in the tunnelling industry, and it is essential to develop accu-
rate and effective approaches to address it during tunnelling operations.  The cutters on a TBM are es-
sential cutting tools for tunnel boring and as they wear down or become damaged (Figure 1), the effi-
ciency of the TBM decreases, leading to increased downtime and higher costs/risks (Bligin et al., 
2012). There are two main wear mechanisms of cutters: normal abrasive wear and abnormal wear 
caused by highly variable loads which happens more frequently in mixed soil profiles (Liu et al., 
2020). Replacements of cutters are required when they reach their normal wear limit or experience ab-
normal wearing. Such replacements are typically carried out during CHI when the TBM is stopped to 
conduct the replacements. 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Common mechanisms of cutter wear (modified from Karami et. al., 2021).  

 

Current methodologies of predicting cutter wear to ensure timely replacements include using empirical 
formulas based on interpreted ground conditions to estimate frequency of cutter replacements (Ko et. 
al., 2020) or a popular emerging method is the utilization of sensor monitoring to obtain real time in-
formation on cutter wear status (Lan et. al., 2019). However, both methods consist of a few limitations. 
Although the empirical method provides reasonable estimations, it still largely relies on the interpreta-
tion of ground profiles which has a degree of uncertainty due to potential variations in actual ground 
conditions. On the other hand, sensor monitoring requires the sensors to be installed on the TBM cutter 
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ABSTRACT: Cutters are essential tools for Tunnel Boring Machines (TBM) but are subject to wear 
and require timely replacement through Cutter Head Intervention (CHI). CHI is usually planned based 
on engineering judgement derived from TBM operations and interpreted ground conditions. However, 
conservative engineering judgment may result in early CHI, which can be unnecessary if the cutters 
have not worn out. Conversely, less conservative engineering judgement may result in late cutter re-
placement, potentially impacting the cutter head or other relevant parts of the TBM. With the availa-
bility of big data generated during tunnelling, machine learning, one of the artificial intelligences (AI) 
technologies, provides an opportunity for the engineer to obtain a second opinion. This preliminary 
study attempts to leverage several machine learning algorithms using regression and classification ap-
proaches to predict cutter wear in a slurry-type TBM in the Bukit Timah Granite formation by analyz-
ing TBM operational parameters. The results demonstrated that the machine learning algorithms, 
trained by past tunnelling project data, could reasonably predict cutter wear, leading to a more efficient 
CHI regime. 
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head which is exposed to harsh working environments such as high temperature and vibration that may 
not be sustainable over time. 
 
With the availability of big data generated during tunnelling operations, supervised machine learning 
has then emerged as a potential complementary approach for predicting cutter wear in TBM by lever-
aging its ability to learn from existing data and identify complex patterns. Several studies have indicat-
ed that common TBM operational parameters such as thrust, torque, penetration rate and cutter rota-
tion speed can provide a reasonable indication of the extent of cutter wear (Fukui et. al., 2006), (Toth 
et. al., 2013). Therefore, it is worthwhile to investigate the use of supervised machine learning to de-
rive the relationship between TBM operational parameters and cutter wear. This paper aims to provide 
a preliminary exploratory study on the use of a machine learning-based prediction model for cutter 
wear detection in Singapore’s tunnelling projects. 
 
1.2 Project Used for Study 
 
For this study, data was obtained from Land Transport Authority’s (LTA) Thomson Line Contract 
T211 project that was carried out in the Bukit Timah Granite Formation. The project consisted of four 
tunnels using four slurry-shield TBMs. In this preliminary stage, only one TBM was selected to obtain 
the training data used to develop the machine learning model. This TBM will be termed as TBM A. 
 
TBM A is a 6.63m slurry shield TBM consisting of three types of cutters, namely the double cutters, 
face cutters and gauge cutters (Figure 2). Each cutter is labelled with a position index that indicates its 
position radius, with smaller numbers representing cutters closer to the centre and larger numbers rep-
resenting those closer to the outer circumference. Based on TBM A’s CHI records, the tunnel transi-
tioned through a granite profile with weathering grades of GII to GVI. Figure 3 shows the presence of 
rock and soil profiles, as well as mixed profiles, occurring at Zone 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2. Details of TBM used for study. 

 

 

 

 
 
 
 
 
 
 
 
 
 
Figure 3. Details of soil profiles encountered based on TBM A’s CHI records. 

 

A study was also conducted to analyse TBM A’s cutter replacement frequency. The objective was to 
derive any useful insights or patterns. As depicted in Figure 4, many abnormal wears were detected at 
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Zone 2, which corresponded to the heterogeneous soil layers. Moreover, the frequency of cutter re-
placements was higher for the gauge cutters, while the double cutters had the least replacement fre-
quency. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

Figure 4. Details of TBM A’s cutters’ replacement frequencies. 

 

 
2 DATA COLLATION 
 
2.1 Input Data 
 
This study uses TBM operational parameters for real-time inputs instead of interpreted data. The pa-
rameters were obtained from LTA's TEMS database, which captures TBM A's operational parameters 
throughout the entire operation process. To ensure selected input feature data hold sufficient weight to 
the output, irrelevant dataset was eliminated in three stages during preprocessing. 
 

i. Data Filtering:  
Raw data were extracted from the thrusting stage of the TBM since it is the stage when the cutters 
are in full operation. A recognition function was used to filter the data whereby all the values of 
thrust, advance rate, torque and rotation speed must not be 0. 
 

ii. Data Sensitivity Analysis: 
To ensure that the inputs accurately reflected the adverse ground conditions that cause cutter wear, 
a sensitivity analysis was conducted. Box-whisker plots were used to visually represent the differ-
ent variations of operational parameters generated as the TBM transitioned through the five dis-
tinct soil zones as identified previously. This ensured that the parameters selected are relevant. 
 

 
 

 
 
 

 
 

 

 

Figure 5. Sample box-whisker plots of chosen parameters to ensure data sensitivity. 

 

iii. Data Correlation Analysis 
Multicollinearity happens when two or more input variables are highly correlated with each other. 
This may lead to overfitting where the model learns the noise in the data. To determine the correla-
tion, the Pearson correlation coefficient value was utilized as shown in Equation (1). 
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                              (1) 

Where p(X, Y) = Pearson correlation coefficient between the two variables; COV(X, Y) = covari-
ance of the two variables;  = standard deviation values of the two variables. 
 
As shown in Table 1, the correlation analysis was conducted using the correlation matrix of the se-
lected input parameter features whereby features that are strongly correlated with one another can 
be identified. Generally, when a pair of feature has a correlation coefficient of more than 0.8, one 
of it can be removed to reduce the model complexity. For example, the advance rate and excava-
tion rate are strongly correlated hence one of the input features can be removed. 

 
Table 1. Correlation matrix of selected input features. 

 Previous 

Wear 

Posi-

tion 

Dis-

tance 

Thrust Torque Pene-

tration 

Rot. 

No. 

Exc. 

Rate 

Rot. 

Speed 

Adv. 

Speed 

MC 

Previous 

Wear 

1           

Position -0.0022 1          

Distance -0.165 -0.012 1         

Thrust 0.25 -0.064 0.174 1        

Torque 0.251 -0.045 -0.232 0.725 1       

Penetration -0.233 0.042 0.296 -0.717 -0.599 1      

Rot. No. 0.202 -0.053 -0.421 0.51 0.658 -0.541 1     

Exc. Rate 0.002 0.012 0.474 -0.036 -0.235 0.321 -0.545 1    

Rot. Speed 0.122 -0.049 0.053 0.613 0.347 -0.314 0.079 0.605 1   

Adv. Speed -0.094 0.023 0.521 -0.305 -0.50 0.658 -0.627 0.942 0.428 1  

MC -0.05 0.025 0.354 -0.239 0.078 0.338 -0.274 0.179 -0.283 0.238 1 

 

 

2.2 Output Data 
 
In order to use supervised machine learning to predict cutter wear, the extent of the wear must first be 
quantified. The cutter wear data were obtained from the CHI records of TBM A. The quantification of 
cutter wear has the potential to be a numerical or category output, hence this study explored the usage 
of both a regression and categorical prediction model to see which would fetch a better result.  
 
To express the wear extent as a numerical value, the formula in Equation (2) was utilized. 
 

𝑊𝑒𝑎𝑟  % =  
𝑊𝑒𝑎𝑟 𝑉𝑎𝑙𝑢𝑒 (𝑚𝑚)

𝐿𝑖𝑚𝑖𝑡 𝑊𝑒𝑎𝑟 𝑉𝑎𝑙𝑢𝑒 (𝑚𝑚)
× 100 

                      (2) 

Where wear value is the wear extent that was measured using a gauge tool in the CHI and limit wear 
value as the stipulated limit for each cutter discs type. 
 
On the other hand, the primary concern is to determine if the cutters need to be replaced or not, hence 
it is also possible to simply quantify them as categorical labels ‘Replaced’ and ‘Unreplaced’. 
 
 

2.3 Final Collated Training Dataset 
 
After the extraction and analysis of training data from the CHI records and TEMS database, Tables 2 
& 3 show the final chosen set of sample training datapoints that were fed into the regression and clas-
sification prediction models respectively. For the regression model, 676 datapoints were used for train-
ing while 921 datapoints were used to train the classification model. As tunnel boring operation is a 
time-series operation, the input parameters took the average value between each replacement to best 
represent the nature of soil encountered during the boring process. 
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Table 2. Sample input and output datapoints used for regression model. 
_________________________________________________________________________________________________________________ 

                                                                        Inputs                                                                          Output 
_________________________________________________________________________________________________________________ 

Thrust    Torque   Penetration  Distance  Previous   Position  Rotation   Rotation   Excavation  Moisture     Wear 
(kN)       (kNm)   (mm/rev.)     (m)          Wear (%)  Index      Number   Speed       Rate             Content       (%) 
                                                                                                                  (rev/min)  (m3/min)     (%)   
_________________________________________________________________________________________________________________ 

11365     625          4.17          64.53        3.33            1            368          2.36           0.283          22               6.67 
18800     2098        1.94          42.06        50               3            887          3.02           0.206          25               50 
18331     2232        1.75          19.61        0                 17          909          3.26           0.206          12               26.67 
19209     2125        2.11          22.46        86.67          20          867          2.81           0.303          25               13.33 
16771     1474        2.85          41.95        0                 42          683          2.99           0.288          12               100 
_________________________________________________________________________________________________________________ 

 
Table 3. Sample input and output datapoints used for classification model. 
_________________________________________________________________________________________________________________ 

                                                                        Inputs                                                                          Output 
_________________________________________________________________________________________________________________ 

Thrust    Torque   Penetration  Distance  Previous   Position  Rotation   Rotation   Excavation  Moisture   Labels 
(kN)       (kNm)   (mm/rev.)     (m)          Wear (%)  Index      Number   Speed       Rate             Content        
                                                                                                                  (rev/min)  (m3/min)     (%)   
_________________________________________________________________________________________________________________ 

11365     625          4.17          64.53        3.33            1            368          2.36           0.283          22        Unreplaced 
18800     2098        1.94          42.06        50               3            887          3.02           0.206          25           Replaced 
18331     2232        1.75          19.61        0                 17          909          3.26           0.206          12        Unreplaced 
19209     2125        2.11          22.46        86.67          20          867          2.81           0.303          25           Replaced 
16771     1474        2.85          41.95        0                 42          683          2.99           0.288          12           Replaced 
_________________________________________________________________________________________________________________ 

 
The training dataset was randomly split into 90% for training and 10% isolated for testing, which ad-
heres to the standard machine learning practice for acceptable splitting ratios. The training data was 
utilized to fit the model and fine-tune its hyperparameters, while the testing data was isolated for eval-
uating its performance by comparing the model's predictions to the actual outputs in the testing data. 
 

 
3 PREDICTION MODELS 
 
3.1 Machine Learning Algorithms 
 
In supervised machine learning, various algorithms exist for training models. It's important to note that 
there is no single perfect algorithm for prediction models (Singh et. al., 2016). Experimenting with dif-
ferent algorithms is crucial to find the best fit for the specific use case. This paper will initially explore 
two common algorithms, Decision Trees (DT) and K-Nearest Neighbors (KNN), known for their abil-
ity to handle complex data and create regression/classification models. 
 
The DT algorithm uses simple decision rules inferred from prior dataset features to predict the value of 
a target variable (Pedregosa et. al., 2011). It starts from a root node and branches to decision-making 
nodes, ultimately reaching a final leaf node (Figure 6). Each internal node tests a feature in the dataset, 
with each branch representing a possible test result and each leaf node indicating the final classifica-
tion of the target variable (Che et. al., 2011). The hyperparameters that control the DT learning process 
are the depth of tree, minimum samples per leaf and split, and the criterion that determines the split. 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6. Conceptual diagram of the DT algorithm (Lee at. al., 2020). 
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The KNN is an algorithm that leverages proximity to perform classifications of predicted data. The 
prediction is made based on the datapoints that appear the closest around the unknown datapoint (Cun-
ningham et. al., 2021). The quantity of the closest datapoints to determine a prediction is defined by 
the number of neighbors set in the algorithm. For example, as shown in Figure 7, data points are being 
depicted in a feature space whereby the K-Nearest Neighbors classifier has 7 nearest neighbors being 
set in the algorithm. For a classification problem, the unknown data shown will be set as Class B since 
4 out of 7 nearest neighbors belong to Class B. Whereas for a regression problem, the algorithm will 
take the mean value of the 7 nearest neighbors. The hyperparameters that control the KNN learning 
process are the number of neighbors and the choice of distance measure to define the closest points. 
 
 
 
 
 
 
 
 
 
 

 

Figure 7. Conceptual diagram of the KNN algorithm (IBM, n.d.). 

 
In this study, the coding of both algorithms was done Python Jupyter Notebook whereby the loading of 
the training dataset and the fitting of the algorithms took place. To ensure the best performance results, 
computational techniques such as the use of StandardScalar function to standardize the scale of the dif-
ferent input feature values for better analysis and GridSearchCV function to derive the optimal combi-
nation of hyperparameters that fetches the best performance scoring were utilized. 
 
 
3.2 Performance Metrics 
 
The performance of a machine learning prediction model is defined by how similar the predicted out-
put is to the actual real-life output. Utilizing statistical measures is then a common methodology to de-
fine the performance of the developed machine learning algorithm. 
 
For the regression model that produces a numerical value, common statistical indices will be used to 
evaluate the goodness of fit and the errors. The indices utilized are as shown in Equations (3) to (5). 
 

𝑅2 = 1 −
𝑅𝑆𝑆

𝑇𝑆𝑆
 

                              (3) 

Where R2 = coefficient of determination; RSS = sum of squares of residuals; TSS = total sum of 
squares. 

     
𝑀𝐴𝐸 =

1

𝑛
  𝑒𝑖 

𝑛

𝑖=1

 

  (4) 

    

𝑅𝑀𝑆𝐸 =  
1

𝑛
 𝑒𝑖

2

𝑛

𝑖=1

 

 (5)                     

Where MAE = mean absolute error; RMSE = root mean square error; n = number of data points; e = 
error value between the actual and predicted data point. 
 
As for the classification model that produces categorical labels, the confusion matrix (Table 4) was 
used to evaluate the model’s performance. Leveraging the matrix, critical ratios Precision and Recall 
were used. Precision measures the percentage of correctly predicted positive outcomes out of all posi-
tive predictions, which affects TBM productivity. Recall measures the percentage of correctly predict-
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ed positive outcomes out of all actual positive outcomes, which affects TBM efficiency. Hence, in this 
context, these two ratios are more critical than evaluating the overall accuracy of the model. 
 
Table 4. Confusion matrix for classification prediction model. 

 Predicted 

Replaced Unreplaced 

Actual Replaced True Positive (TP) False Negative (FN) 

Unreplaced False Positive (FP) True Negative (TN) 

 

   
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  % =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
× 100 

   (6) 

  
𝑅𝑒𝑐𝑎𝑙𝑙  % =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
× 100 

 (7) 

 
 
4 RESULTS VALIDATION 
 
4.1 Results of Testing Dataset 
 
The performance of the prediction models was first validated on the 10% randomly sampled dataset 
that was isolated from the training dataset obtained from TBM A.  
 
For the regression model, the statistical measures R2, MAE and RMSE were used to evaluate the mod-
el’s performance. Table 5 shows the data points used for testing, and Tables 6 & 7 display the perfor-
mance results obtained using the DT and KNN algorithms, along with the hyperparameters set to 
achieve those results. Both algorithms produced similar R2 values of 0.71 and 0.75, respectively, and 
exhibited an acceptable error margin, considering the cutter wear values from the testing dataset go up 
to 100%. 
 
Table 5. Testing datapoints used for regression models. 
__________________________________________________________________ 

No. of Datapoints        Wear % Range       Wear % Mean Value 
__________________________________________________________________ 

68                                 3.33-100%              47.86% 
__________________________________________________________________ 

 
 

Table 6. Results of regression model using DT algorithm. 
___________________________________________________________________________________________ 

                                Hyperparameters Set                                                Results 
___________________________________________________________________________________________ 

Tree Depth      Min. Samples    Min. Samples    Criterion               R2         MAE     RMSE    
                        Per Leaf             Per Split     
___________________________________________________________________________________________ 

 9                      3                         5                        MSE                    0.71       12.63     18.08 
___________________________________________________________________________________________ 

 
Table 7. Results of regression model using KNN algorithm. 
________________________________________________________________________ 

         Hyperparameters Set                                         Results 
________________________________________________________________________ 

No. of Nearest         Choice of Dist.                  R2         MAE     RMSE    
Neighbors                Measure 
________________________________________________________________________ 

 4                              Euclidean                         0.75       11.65     17.12 
________________________________________________________________________ 

 
For the classification model, the confusion matrix generated by both algorithms was evaluated to de-
termine the models’ performance (Figure 8). Similarly, both algorithms displayed similar performance 
as seen in Tables 8 & 9. It can be observed that the Precision and Recall rates of the unreplaced cutters 
are higher of up to 0.93. This is expected since the frequency of unreplaced cutters is usually much 
higher. However, the prediction model's ability to detect replacements is more critical. Nevertheless, 
when evaluating the rates of the replaced cutters, they were still within an acceptable range of at least 
0.70. 
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Figure 8. Extracted confusion matrix from classification models developed using DT and KNN algorithms. 
 
 

Table 8. Results of classification model using DT algorithm. 
_________________________________________________________________________________________________________________ 

                           Hyperparameters Set                                                             Results 
_________________________________________________________________________________________________________________ 

Tree Depth   Min. Samples  Min. Samples   Criterion         Precision      Recall          Precision        Recall 
                     Per Leaf           Per Split                                 (Replaced)   (Replaced)   (Unreplaced)   (Unreplaced)   
_________________________________________________________________________________________________________________ 

 8                   5                       5                      Gini                0.70              0.73             0.88                 0.86 
_________________________________________________________________________________________________________________ 

 
Table 9. Results of classification model using KNN algorithm. 
__________________________________________________________________________________________________ 

         Hyperparameters Set                                                      Results 
__________________________________________________________________________________________________ 

No. of Nearest         Choice of Dist.            Precision      Recall          Precision        Recall 
Neighbors                Measure                      (Replaced)   (Replaced)   (Unreplaced)   (Unreplaced)   
__________________________________________________________________________________________________ 

 5                              Euclidean                     0.73              0.85             0.93                 0.86 
__________________________________________________________________________________________________ 

 

4.2 Applying Trained Model on More Unseen Data 

 
In addition to evaluating the randomly sampled testing dataset, it is also crucial to analyse the model's 
practical applications with more unseen data. In this regard, the trained model was further validated by 
applying it to the cutter wear data of another TBM in the same project. This TBM is termed as TBM 
B. Data from four specific CHIs in TBM B (namely CHI numbers 2, 4, 11, and 13) were used to eval-
uate the trained model's performance. These CHIs were selected because they consisted of variations 
in the types and number of cutters that need to be replaced, as shown in Figure 9. The trained model 
was evaluated based on its ability to identify the different variations of cutters that need to be replaced 
in each CHIs and to predict accurately that no replacements were necessary in CHI 13. 
 
 
 
 
 
 
 
 
 
 

 
Figure 9. CHIs in TBM B chosen for validating trained model. 

 
To validate the performance of the prediction models, the actual and predicted wear quantification data 
were extracted and compared. Comparison tables were used to analyse the actual versus predicted 
number of replacements required for each type of cutter disc in each CHI. The extracted wear quantifi-
cation as numerical values from the regression prediction model are presented in Figure 10, while the 
extracted classification labels from the classification model are shown in Figure 11. 
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The predicted wear quantifications generally followed the trend of the actual data in both regression 
and classification approaches, despite some errors and misclassifications for individual cutters. How-
ever, in a more practical approach, the number of replacements as shown in the comparison tables was 
accurately identified. In the regression model, most predicted replacements for each cutter type were 
within a narrow margin of +/-1, indicating high precision. The classification model showed slightly 
lower precision, but most replacements were still within an acceptable margin of +/-2. Notably, the DT 
and KNN algorithms (for both classification and regression models) struggled to predict replacements 
for double cutters in CHI 11, while correctly predicting no replacements needed for CHI 13. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 10. Extracted validation results and comparison tables from regression model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Extracted validation results and comparison tables from classification model. 
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5 ERROR ANALYSIS 
 
The machine learning models utilizing the DT and KNN algorithms for both classification and regres-
sion approaches showed promising results in predicting cutter wear for a slurry shield TBM in Bukit 
Timah Granite Formation. Nevertheless, to identify areas for model improvement, an analysis was 
conducted to determine the sources of errors. This section highlights the insights gained through error 
analysis using the regression dataset. 

 
 

5.1 Higher Errors for Double Cutter Replacements 
 
As shown in Figure 12, the error trends reflected in both DT and KNN algorithms were similar. Nota-
bly, the detection of replacement requirements for double cutters resulted in significantly more errors 
compared to the other types of cutters, such as gauge and face cutters. This could be attributed to the 
significantly lesser replacement data available for double cutters, in comparison to the other types. To 
minimise the errors occurring for double cutters replacement, sampling techniques can be explored. 
The proposed sampling techniques will be further elaborated in Section 6 of this paper. 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 12. Error analysis based on cutter type. 

 

5.2 Poor Detection of Abnormal Wear 

 
Another significant observation made was that the occurrence of errors in detecting abnormal wear 
type of cutters was significantly higher than that of normal wear type. This may be due to the limita-
tions of using average values of TBM operational parameters taken between each replacement, which 
may not adequately capture the occurrence of mixed soil profiles where abnormal wear tends to fre-
quently occur. To improve the model's accuracy in detecting abnormal wear, feature engineering tech-
niques can be introduced to better represent the occurrence of mixed soil profiles. The proposed fea-
ture engineering techniques will be further elaborated in Section 6 of this paper. 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 13. Error analysis based on cutter wear type. 
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6 FUTURE WORKS AND DISCUSSIONS 
 
To propose model improvements and robustness for an efficient machine learning-based prediction 
model to improve tunnelling projects’ CHI regime, the following future works are proposed: 
 

i. Explore Sampling Techniques to Deal with Imbalanced Dataset: 
Having an imbalanced dataset is one of the most common problems for machine learning whereby 
the minority class has the tendency to have more errors due to its limited dataset. This is the case 
for this project as the quantity of double cutters is significantly lesser than the face and gauge cut-
ters.  
To counter this problem, sampling techniques can be utilized to achieve a more balanced dataset 
whereby the accuracy of picking out the double cutters’ replacements will not be compromised. 
This can be done through methods such as oversampling the minority class, undersampling the 
majority class or introducing synthetic samples such as utilizing the Synthetic Minority Over-
sampling Technique (SMOTE) (Junsomboon et. al., 2017). Additionally, it may be worthwhile to 
compartmentalize the machine learning models. For example, having one prediction model for 
double and face cutters and another separate model solely for gauge cutters can reduce the errors 
occurring for each type of cutter. 
  

ii. Conduct Feature Engineering for Better Representation of Mixed-Face Soil Profiles: 
To improve the model’s performance in detecting abnormal wear, feature engineering can be con-
ducted to ensure the instance of encountering a mixed soil profile is better represented.  
An exploratory study can be done on the features to be introduced such as the soil parameters that 
are obtained during the CHI. Introducing additional statistical measures of the operational parame-
ters such as the maximum or variance values may have a better indication of the complexity and 
variability of the soil profiles encountered by the TBM. This in turn will improve the accuracy of 
the prediction models by having better detection of abnormal wear occurring more frequently in 
mixed-face soil profiles. 
 

iii. Expand the Dataset to Include Tunnels Operating in Other Soil Formations and With Different 
TBM Types: 

In this preliminary study, the efficiency of the machine learning based prediction models was only 
validated against a slurry shield TBM operating in the Bukit Timah Granite ground formation. As 
the cutter wear pattern may be different across different TBM types operating in other ground 
formations, further studies should be conducted to determine the prediction models’ ability to de-
tect cutter wear in various tunnelling operation scenarios. 
 

iv. Explore More Machine Learning Algorithms: 
This paper has explored the use of DT and KNN algorithms to develop prediction models. With 
the expansion of the training dataset, more algorithms can be explored. For example, exploring the 
usage of Random Forest (an ensemble learning algorithm based on DT) or neural networks (a deep 
learning algorithm). 
 
 

7 CONCLUSION 
 
This preliminary study highlights the potential of using machine learning to detect cutter wear in TBM 
during tunnelling operations. The results obtained from the testing dataset showed that the regression 
prediction models using DT and KNN algorithms obtained similar R2 values of 0.71 and 0.75 respec-
tively, while the classification prediction models using both algorithms obtained Precision and Recall 
rates ranging between 0.70 to 0.85. Additionally, the performance of the trained prediction models was 
further validated by applying them to more unseen data using a practical approach, demonstrating that 
both regression and classification approaches accurately predicted the required replacements for each 
type of cutter in specific CHIs with a narrow margin of +/- 1 and 2, respectively. These findings sug-
gested that both regression and classification approaches using KNN and DT algorithms are feasible, 
although it is essential to consider the trade-offs between these two approaches in terms of interpreta-
bility, computation time, and model complexity. 
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While the results are promising, the development of an accurate and reliable prediction model requires 
further exploration. As discussed in Section 6, sampling techniques and feature engineering can be in-
vestigated to improve the robustness of the prediction models. Furthermore, since the study was solely 
validated against slurry shield TBM operating in the Bukit Timah Granite Formation, the next step of 
the study should expand the training dataset to include more diverse ground conditions and TBM 
types. It is also crucial to ensure that the model's predictions align with the practical implications of 
replacing cutters, such as cost and downtime. 
 
Overall, this paper demonstrates the usage of machine learning as a viable alternative to enhance the 
TBM CHI process by providing real-time predictions on the necessity for cutter replacements using 
operation parameter inputs generated during tunnelling. Such predictions can facilitate informed deci-
sion-making, ultimately improving the efficiency of tunnelling projects. 
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